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Introduction

Hardware (r)evolution

The hardware environment is heterogeneous and in flux:
I Microprocessors have become multiprocessors.
I Quad-core is standard on the desktop; 8-core by year’s end.
I Larrabee is rumored to have 32 cores
I Heterogeneous processors (Cell and GPU)

Writing parallel programs in this environment is more challenging than
ever!

And it is a problem for everyone!
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Introduction

The Manticore project

The Manticore project is motivated by the need for parallelism in
commodity applications.

I Need high-level constructs to hide hardware details
I Support for heterogeneous applications
I Opportunity for functional programming (again)
I Challenge: efficient implementation on a range of hardware

platforms.
NOTE: we have purposefully avoided HPC as an application area!
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Introduction

People

The Manticore project is a joint project between the University of
Chicago and the Rochester Institute of Technology.

Lars Bergstrom University of Chicago
Matthew Fluet Rochester Institute of Technology
Mike Rainey University of Chicago
Adam Shaw University of Chicago
Yingqi Xiao University of Chicago

with help from

Nic Ford, Korei Klein, Joshua Knox, Jon Riehl, Ridge Scott at
the University of Chicago

Also, thanks to the NSF for funding this research.
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Introduction Design overview

Language design

Our initial design is purposefully conservative. It can be summarized
as the combination of three distinct sub-languages:

I A mutation-free subset of SML (no refs or arrays, but includes
exceptions).

I Language mechanisms for implicitly-threaded parallel
programming.

I Language mechanisms for explicitly-threaded parallel
programming (a.k.a. concurrent programming) based on message
passing (not MPI).

The focus of this talk will be on the implicitly-threaded mechanisms.
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Introduction Implicit threading

Language design (continued ...)

Manticore provides several light-weight syntactic forms for introducing
parallel computation.

These forms are declarative and are treated as hints by the system.

I Parallel arrays provide fine-grain data-parallel computations over
sequences.

I Parallel tuples provide a basic fork-join parallel computation.
I Parallel bindings provide data-flow parallelism with cancelation of

unused subcomputations.
I Parallel case provides non-deterministic speculative parallelism.
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Introduction Implicit threading

Parallel arrays

We support fine-grained nested-data-parallel (NDP) computation using
a parallel array comprehension form (NESL/Nepal/DPH):

[| exp | pat i in expi where pred |]

For example, the parallel point-wise summing of two arrays:

[| x+y | x in xs, y in ys |]

NOTE: zip semantics, not Cartesian-product semantics.

This construct can be mapped onto SIMD type hardware (GPUs).
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Introduction Implicit threading

Nested data parallelism (continued ...)

Mandelbrot set computation:

fun x i = x0 + dx * Float.fromInt i;
fun y j = y0 - dy * Float.fromInt j;
fun loop (cnt, re, im) =

if (cnt < 255) andalso (re*re + im*im > 4.0)
then loop(cnt+1, re*re - re*im + re, 2.0*re*im + im)
else cnt;

[|
[| loop(0, x i, y j) | i in [| 0..N |] |]
| j in [| 0..N |]

|]
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Introduction Implicit threading

Irregular parallelism

type sparse_matrix = (int * float) parray parray

fun sparseDotP (sv, v) = sumP [| x * v!i | (i, x) in sv |]

fun smxv (sm, v) = [| sparseDotP(row, v) | row in sm |]
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Introduction Implicit threading

Parallel tuples
Parallel tuples provide fork-join parallelism. For example, consider
summing the leaves of a binary tree.

datatype tree = LF of long | ND of tree * tree

fun treeAdd (LF n) = n
| treeAdd (ND(t1, t2)) =

(op +) (| treeAdd t1, treeAdd t2 |)

10 2 3
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Introduction Implicit threading

Parallel bindings

Parallel bindings provide more flexibility than parallel tuples. For
example, consider computing the product of the leaves of a binary tree.

fun treeMul (LF n) = n
| treeMul (ND(t1, t2)) = let

pval b = treeMul t2
val a = treeMul t1
in
if (a = 0) then 0 else a*b

end

NOTE: the computation of b is speculative.
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Introduction Implicit threading

Parallel bindings (continued ...)

10 2 3
0

0
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Introduction Implicit threading

Parallel case

Parallel case supports speculative parallelism when we want the
quickest answer (e.g., search problems). For example, consider
picking a leaf of the tree:

fun treePick (LF n) = n
| treePick (ND(t1, t2)) = (

pcase treePick t1 & treePick t2
of ? & n => n
| n & ? => n)

There is some similarity with join patterns.
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Introduction Implicit threading

Parallel case (continued ...)

10 2 3
1

1
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Introduction Implicit threading

Parallel case (continued ...)

Symmetric version of treeMul.

fun treeMul (LF n) = n
| treeMul (ND(t1, t2)) = (

pcase treeMul t1 & treeMul t2
of ? & 0 => 0
| 0 & ? => 0
| a & b => a*b)
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Introduction Implicit threading

Discussion

I These mechanisms compose.
I Value-oriented computation model
I Use tree-structure (ropes) for parray type.
I Futures with Cilk-style work stealing plus cancelation
I Working on size analysis to manage granularity
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Conclusion

Status

I The project is about three years old.
I We have a prototype implementation for the x86-64 processor

(Linux and Mac OS X).
I Demonstrated scalable performance on 16-core system (4

quad-core AMD 8380 processors) vs. good sequential
implementations.

I Sequential performance is okay, but needs improvement.
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Conclusion

Future work

I Applications: interactive graphics, computer vision, and medical
imaging.

I Mapping NDP constructs onto GPUs.
I Better support for speculative parallelism.
I Support for controlled use of mutation for shared data structures.
I Ongoing work to improve sequential performance.
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Conclusion

Questions?

http://manticore.cs.uchicago.edu
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